Chapter 1 Background

 R language (R Core Team 2016) and its packages ecosystem are wonderful tools for data analysis. In community ecology, a series of packages are available for statistical analysis, such as vegan (Oksanen et al. 2019), ape (Paradis and Schliep 2018) and picante (Kembel et al. 2010). However, with the development of the high-throughput sequencing techniques, the increasing data amount and complexity of studies make the data mining in microbiome a challenge. There have been some R packages created specifically for the statistics and visualization of microbiome data, such as phyloseq (Mcmurdie and Holmes 2013), microbiome (https://github.com/microbiome/microbiome), microbiomeSeq (http://www.github.com/umerijaz/microbiomeSeq), ampvis2 (https://github.com/KasperSkytte/ampvis2), MicrobiomeR(https://github.com/vallenderlab/MicrobiomeR), theseus (Price et al. 2018), rANOMALY (Theil and Rifa 2021), tidyMicro (Carpenter et al. 2021), microbial (https://github.com/guokai8/microbial), amplicon (https://github.com/microbiota/amplicon), MicrobiotaProcess (https://github.com/YuLab-SMU/MicrobiotaProcess) and so on. In addition, some web tools associated with R language are also useful for microbiome data analysis, such as Shiny-phyloseq (McMurdie and Holmes 2015), MicrobiomeExplorer (Reeder et al. 2021), animalcules (Zhao et al. 2021) and Namco (Dietrich et al. 2022). Even so, researchers still lack a flexible, comprehensive and modularized R package to analyze and manage the data fast and easily. Based on this background, we created the R microeco package (C. Liu et al. 2021) (https://github.com/ChiLiubio/microeco). Besides, we also developed the file2meco package (https://github.com/ChiLiubio/file2meco) for the data input from some famous tools easily.

References

Carpenter, C. M., D. N. Frank, K. Williamson, J. Arbet, B. D. Wagner, K. Kechris, and M. E. Kroehl. 2021. “tidyMicro: A Pipeline for Microbiome Data Analysis and Visualization Using the Tidyverse in r.” Journal Article. BMC Bioinformatics 22 (1): 41. https://doi.org/10.1186/s12859-021-03967-2.
Dietrich, A., M. S. Matchado, M. Zwiebel, B. Olke, M. Lauber, I. Lagkouvardos, J. Baumbach, et al. 2022. “Namco: A Microbiome Explorer.” Journal Article. Microbial Genomics 8 (8): 000852. https://doi.org/10.1099/mgen.0.000852.
Kembel, S. W., P. D. Cowan, M. R. Helmus, W. K. Cornwell, H. Morlon, D. D. Ackerly, S. P. Blomberg, and C. O. Webb. 2010. “Picante: R Tools for Integrating Phylogenies and Ecology.” Bioinformatics 26: 1463–64.
Liu, Chi, Yaoming Cui, Xiangzhen Li, and Minjie Yao. 2021. microeco: An R package for data mining in microbial community ecology.” Journal Article. FEMS Microbiol. Ecol. 97 (2): fiaa255. https://doi.org/10.1093/femsec/fiaa255.
Mcmurdie, Paul J, and Susan Holmes. 2013. “Phyloseq: An r Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data.” Journal Article. Plos One 8 (4): e61217.
McMurdie, Paul J, and Susan Holmes. 2015. “Shiny-Phyloseq: Web Application for Interactive Microbiome Analysis with Provenance Tracking.” Journal Article. Bioinformatics 31 (2): 282–83.
Oksanen, Jari, F. Guillaume Blanchet, Michael Friendly, Roeland Kindt, Pierre Legendre, Dan McGlinn, Peter R. Minchin, et al. 2019. Vegan: Community Ecology Package. https://CRAN.R-project.org/package=vegan.
Paradis, E., and K. Schliep. 2018. “Ape 5.0: An Environment for Modern Phylogenetics and Evolutionary Analyses in R.” Bioinformatics 35: 526–28.
Price, Jacob R., Stephen Woloszynek, Gail Rosen, and Christopher M. Sales. 2018. “Theseus - an r Package for the Analysis and Visualization.” Journal Article. bioRxiv. https://doi.org/10.1101/295675.
R Core Team. 2016. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing. https://www.R-project.org/.
Reeder, J., M. Huang, J. S. Kaminker, and J. N. Paulson. 2021. “MicrobiomeExplorer: An r Package for the Analysis and Visualization of Microbial Communities.” Journal Article. Bioinformatics 37 (9): 1317–18. https://doi.org/10.1093/bioinformatics/btaa838.
Theil, S., and E. Rifa. 2021. “rANOMALY: AmplicoN wOrkflow for Microbial Community AnaLYsis.” Journal Article. F1000Res 10: 7. https://doi.org/10.12688/f1000research.27268.1.
Zhao, Y., A. Federico, T. Faits, S. Manimaran, D. Segre, S. Monti, and W. E. Johnson. 2021. “Animalcules: Interactive Microbiome Analytics and Visualization in r.” Journal Article. Microbiome 9 (1): 76. https://doi.org/10.1186/s40168-021-01013-0.